
Medtronic Juncos Campus (MJC)

Agenda

- Medtronic Overview (F Costa)
- Site Overview (F Costa)
- Product Lifecycle Process & NPIs (L Torres)
- Design For Reliability and Manufacturability DRM (J Merced)
- Process Development & Equipment/System Development
- Closing Remarks (M Mellado)

Medtronic Overview

Frazer Costa

Leading healthcare technology innovation since 194

For more than 70 years, we have led the way with purpose-driven healthcare technology. That history compels us to relentlessly pursue therapies that change lives.

1949: The garage gang

Earl Bakken, a graduate student in electrical engineering, and his brother-in-law Palmer Hermundslie, an enterprising engineer, started a repair business focused on medical electronics. They named it Medtronic. The pair were driven by passion and a deep purpose to use their scientific and entrepreneurial skills to help others. As the work increased, they added a handful of employees, who called themselves "the garage gang," a reference to their spartan office in two boxcars used as a garage at the Hermundslie family's Minneapolis home.

1957: The first batteryoperated pacemaker

The power went out in Minneapolis on Halloween in 1957, endangering the lives of open-heart surgery patients who were often attached to a pacemaker. Existing pacemakers were bulky boxes wheeled around on carts and plugged into electrical outlets. Concerned for his patients, a University of Minnesota heart surgeon asked Bakken if he could create a batteryoperated pacemaker. Within four weeks, Bakken did just that, and the revolutionary device began saving lives. Hermundslie, an accomplished pilot, flew all over the United States delivering pacemakers to customers. Soon, the "wearable" Medtronic pacemaker was being shipped around the world. One year later, Medtronic produced the first implantable pacemaker.

Written in 1960, our Mission drives everything we do

- To contribute to human welfare by application of biomedical engineering in the research, design, manufacture, and sale of instruments or appliances that <u>alleviate pain, restore</u> <u>health, and extend life</u>.
- 2. To direct our growth in the areas of biomedical engineering.
- 3. To strive without reserve for the greatest possible reliability and quality in our products.
- 4. To make a fair profit.
- 5. To recognize the personal worth of all employees.
- 6. Maintain good citizenship.

Neurostimulation Advancement

CGM in Standard Use

Site Overview

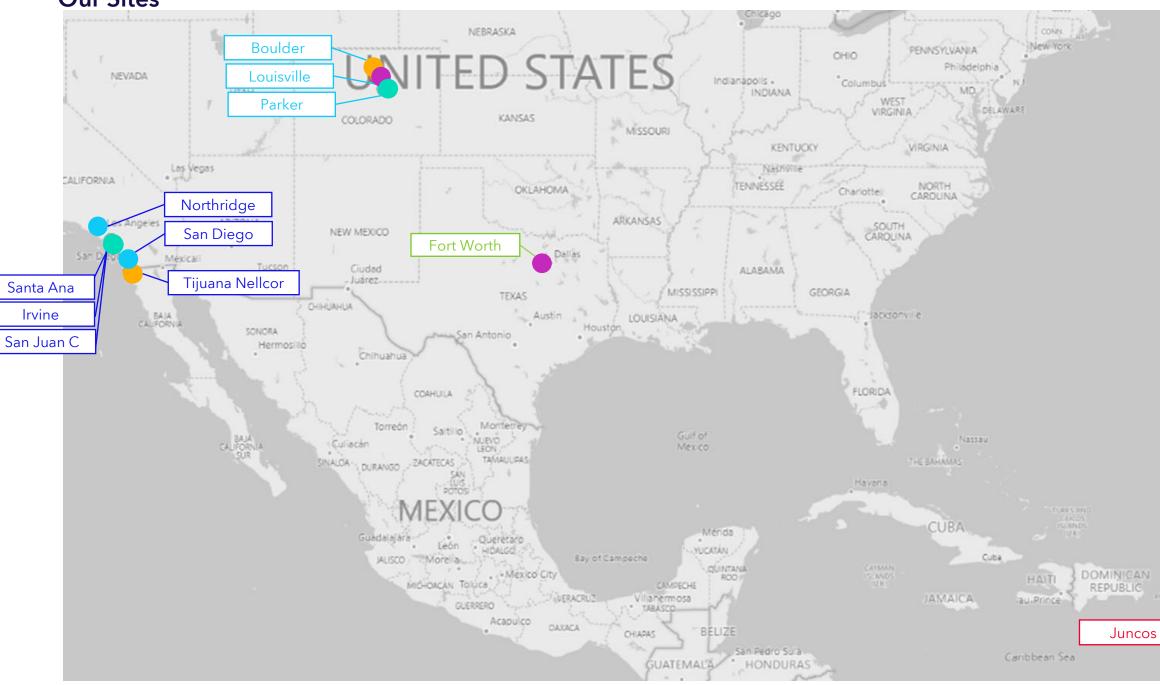
Frazer Costa

Manufacturing Regions

WEST/Mexico	CENTRAL	EAST	CARIBBEAN	EMEA
 Manufacturing Plants: 1. Boulder 2. Parker 3. Louisville 4. Juncos* ★ 5. Northridge 6. Tempe* ★ 7. San Diego 8. Irvine 9. Santa Ana 10. San Juan 11. Menlo Park 12. Nellcor* ★ 13. El Lago* ★ 14. Empalme 15. Juarez 	Manufacturing Plants: 1. Brooklyn Center MECC * * 2. Plymouth NL 3. Rice Creek 4. Plymouth ATS 5. Plymouth SuperD 6. Brooklyn Park 7. Grand Rapids 8. Milwaukee 9. Memphis Medicrea 10. Fort Worth	<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header>	 Manufacturing Plants: San Isidro* Humacao Warsaw Costa Rica Villalba Ponce Ribeirao Preto Sao Sebastiao 	 Manufacturing Plants: Parkmore*★ Athlone Mervue Tolochenaz Yokneam Trevoux Grenoble Lyon Kerkrade Fourmies Deggendorf Jerusalem Mirandola

- Medtronic Mfg. & Development Centers

Contract Manufacturing & Asia/China


Manufacturing Plants:

- 1. Shanghai
- 2. Chengdu DIA
- 3. Changzhou
- 4. Kanghui
- 5. Kangdi (reports commercially)
- 6. Myancor
- 7. Ho Chi Minh
- 8. Singapore

West Americas Platform

Span Breakers

Time Zones | GMT

06:00am (-8h)

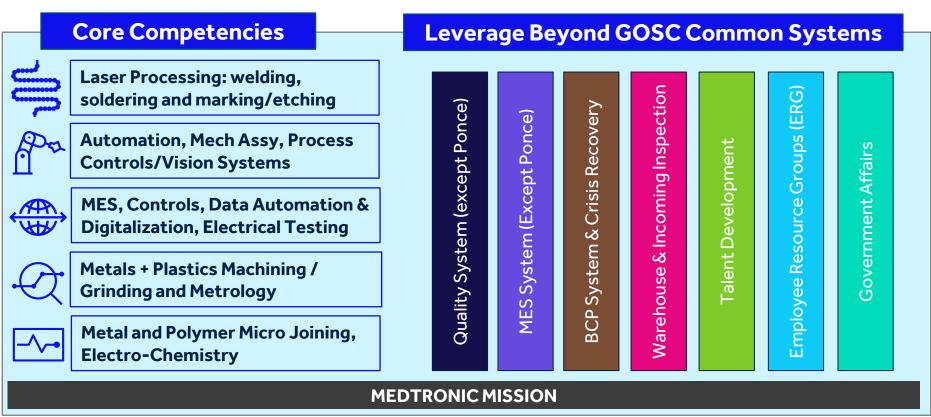
07:00am (-7h)

08:00am (-6h)

04:00pm (+2h)

Medtronic

U.R.


MEDTRONIC IN PUERTO RICO

Puerto Rico Manufacturing & Process Development Centers

Key Facts

- It will be 50 years manufacturing presence in PR by 2024
- One of the largest employers in PR, >38% Female Leaders
- Significant Global Revenue comes from Puerto Rico
- Multiple products for ALL (4) Portfolio Groups :
 - CV
 - Diabetes
 - Medical Surgical
 - Neuroscience
- 900,000+ sq ft footprint
- Technical capabilities (3/4 Process Development Centers)
- Strong Quality and Continuous Improvement Culture

CLUSTER OF SHARED SITES

Address: 50 Road 31, Ceiba Norte Ind. Park, Juncos PR DOB: 2003 (coming from Humacao-1978) **Platform:** West

Op. Units: Neuromodulation, Pelvic Health, Diabetes

FY24 LBE COGM: \$538M DIB-70% & Neuro/PH-30% **Labor:** \$56M (10%) – DIB-15% & Neuro/PH-4% Burden: \$100M (19%) – DIB-21% & Neuro/PH-15% **Material:** \$382M (71%) – DIB- 64% & Neuro/PH-81%

FY24 LBE FG Volume, SKUs, Space:

DBT: 71M/ 225 SKUs (RSV: 52M, SNS: 18M, EP: 216K) NS: 219K/149 SKUs (SMII: 30K, Ascenda/Catheter/Kits: 77K, Devices: 112K) **Space:** 250K Ft^2 (CEA = 87K Ft^2 , Mfg. Non-CEA = 42K Ft^2)

Quality System: Legacy CVG **Regulatory:** PMA, 510K Products

Work & Shift Configuration: Monday-Sunday • Neuromodulation Pumps: 1 Shift • Neuromodulation/Pelvic Health Devices/Kits: 2-3 Shifts • DBT: 3 Shifts (24/5), Sensor Assy. & Fab. (24/7)

Employees: 2,854

IDL: 706 (Regular = 605, Temp = 101)

DL: 2,148 (Regular = 1,306, Temp = 842)

DL / IDL Ratio: 3.0 to 1

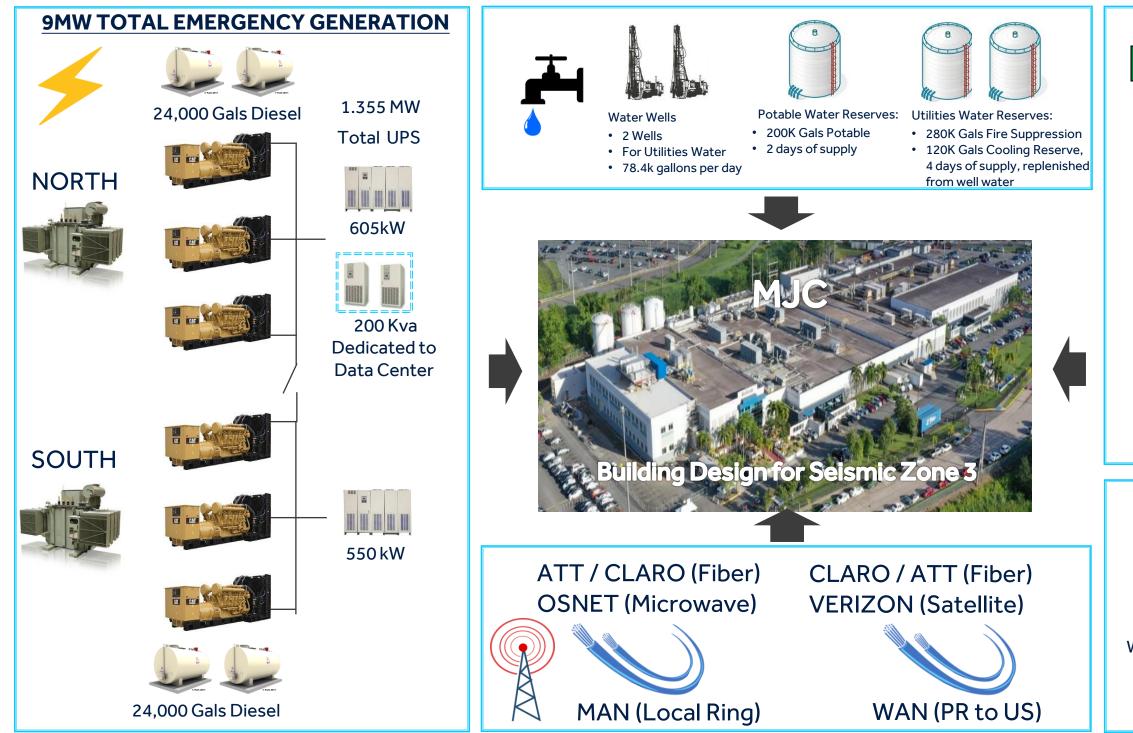
Women: 49%

Active ERGs: MWN/MAE, HLN, PRIDE, CERG

Women in Leadership: 37%

MEDTRONIC JUNCOS CAMPUS **CORE PRODUCTS & COMPETENCIES**

Core Products


Core Competencies

Juncos BCP Infrastructure

Natural Gas Cogen.

MJC | March 2024 | Confidential, for Internal Use Only

= 66% Energy Needs

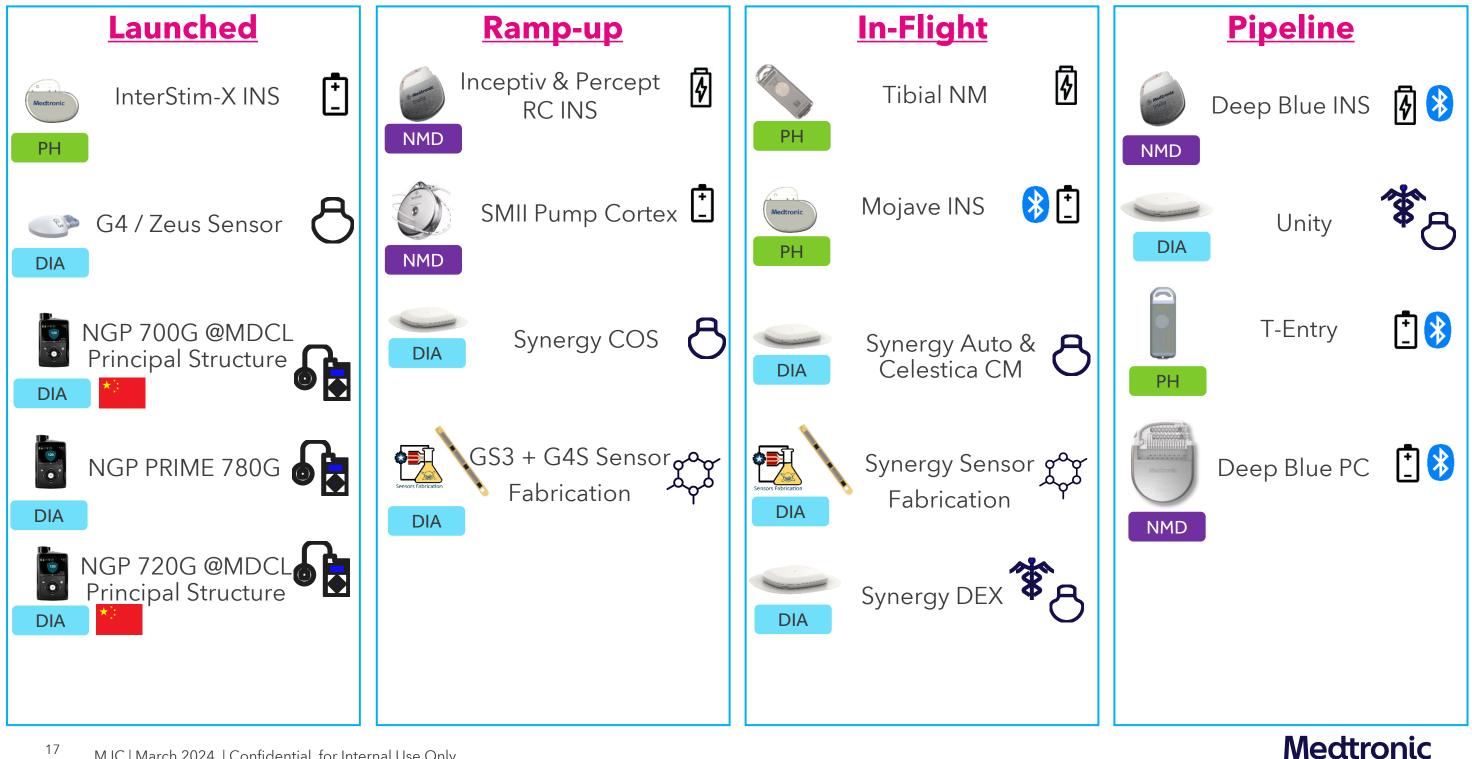
NITROGEN

- Storage: 397.5k cubic feet
- 20 days of supply
- In-House Nitrogen Generation
 - ✓ 85 SCFM (a) 99.998% Purity
 - ✓ 100% of current demand

ARGON

- Storage: 289.5K cubic feet
- 15 days of supply

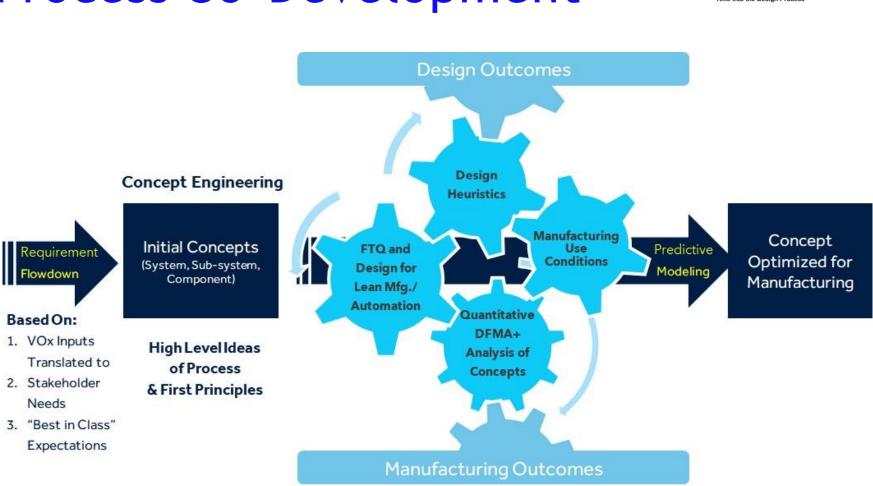
HELIUM


Storage: 2300 lb

23 days of supply

Total of 2500 Tons

Juncos New Product Introductions Outlook


Product Lifecycle Process & NPIs

Luis Torres & Juan Merced

Innovation Excellence

Medtronic Performance System (MPS)

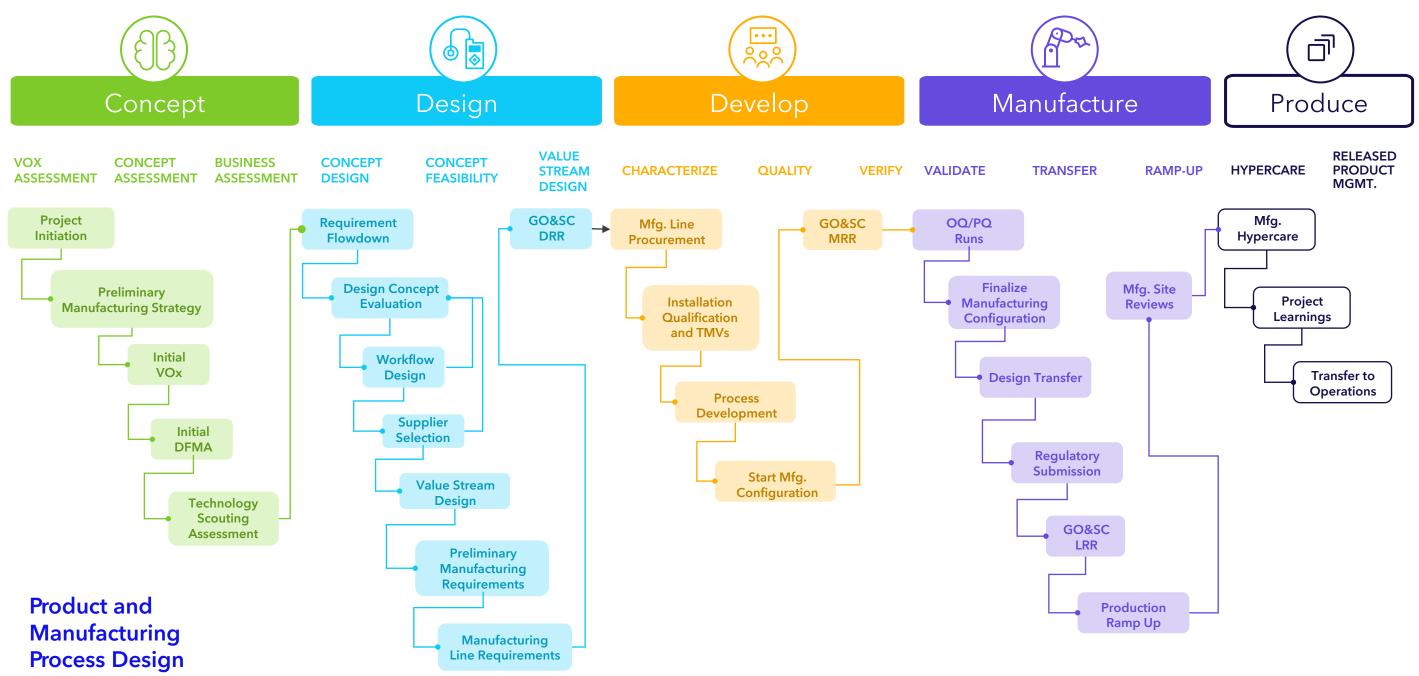
Robust Product and Process Co-Development

Use MPS Best Practices to achieve the most Optimum Product and Process Design that meets the Stakeholder Needs and minimizes Time to Achieve Launch Stability.

•

Typical Pattern

DRM / DES

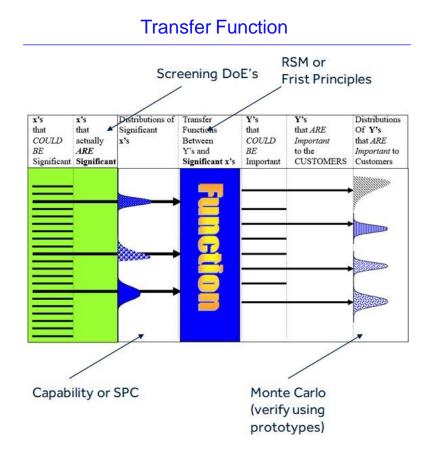

Resources

- **Design for Automation**
- **Utilize DRM Practices** •
 - Voice of Customer (VOx) Ο
 - Use Conditions (UC) Ο
 - Requirements Flow (RF) Ο
 - Concept Engineering (CE) Ο
 - 0 for Assembly (DFA)
 - Robust Design (RD) Ο
 - Design for Reliability (DfR) Ο
 - Capability (%Ppk) Ο
 - Control (C) 0
- Other Applicable Frameworks •

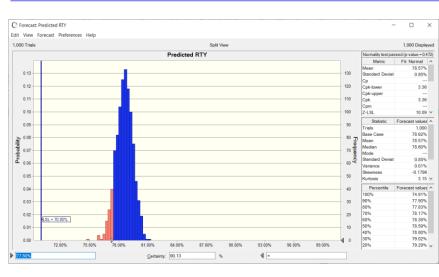
Design for First Time Quality (FTQ) Design for Lean Manufacturing and/or Design for Manufacturability (DFM) and Design

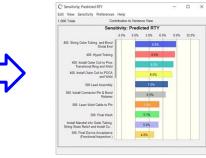
Innovation Excellence

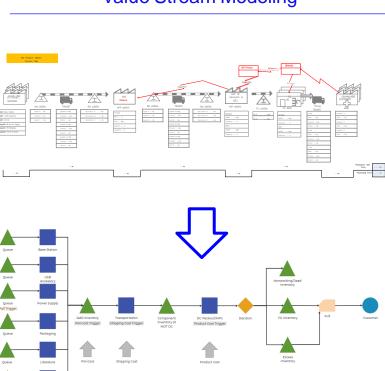
Medtronic Performance System (MPS)

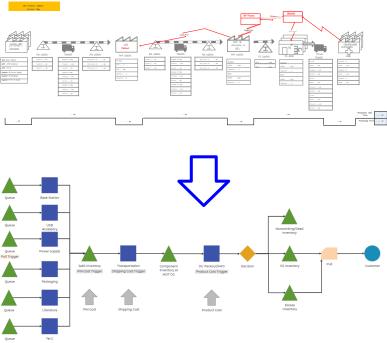

Innovation Excellence

Medtronic Performance System (MPS)

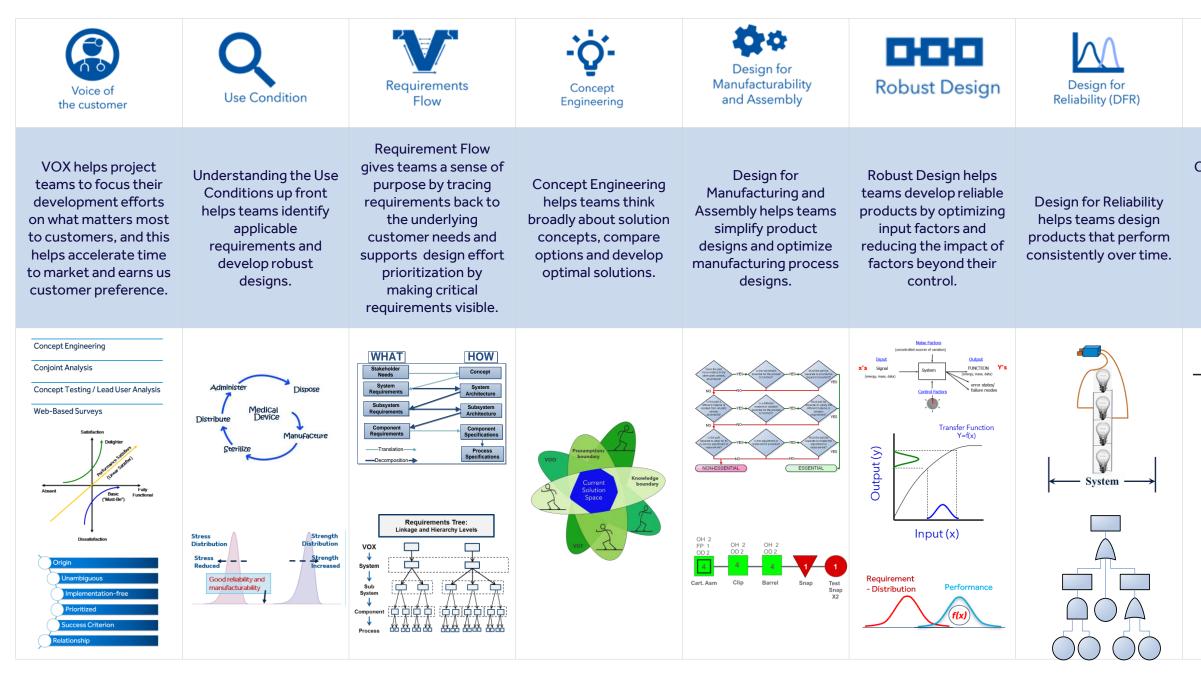

Predictive Modeling to Increase **NPI Launch Confidence**


Enhance Existing and Develop New Predictive Models


- Utilize DRM Practices to establish Product/Process **Output Transfer Functions and Monte Carlo Simulations**
- Utilize Bayesian Networks to establish initial Performance/Reliability/Project Estimates
- Support Development of Value Stream Models to predict Capacity and optimize Planning



Monte Carlo Simulation and Sensitivity Analysis

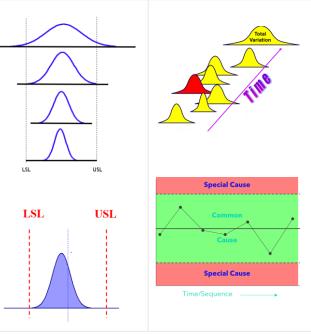


Value Stream Modeling

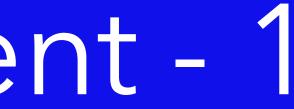
DRM Process

Juan Merced

Design, Reliability and Manufacturability (DRM)



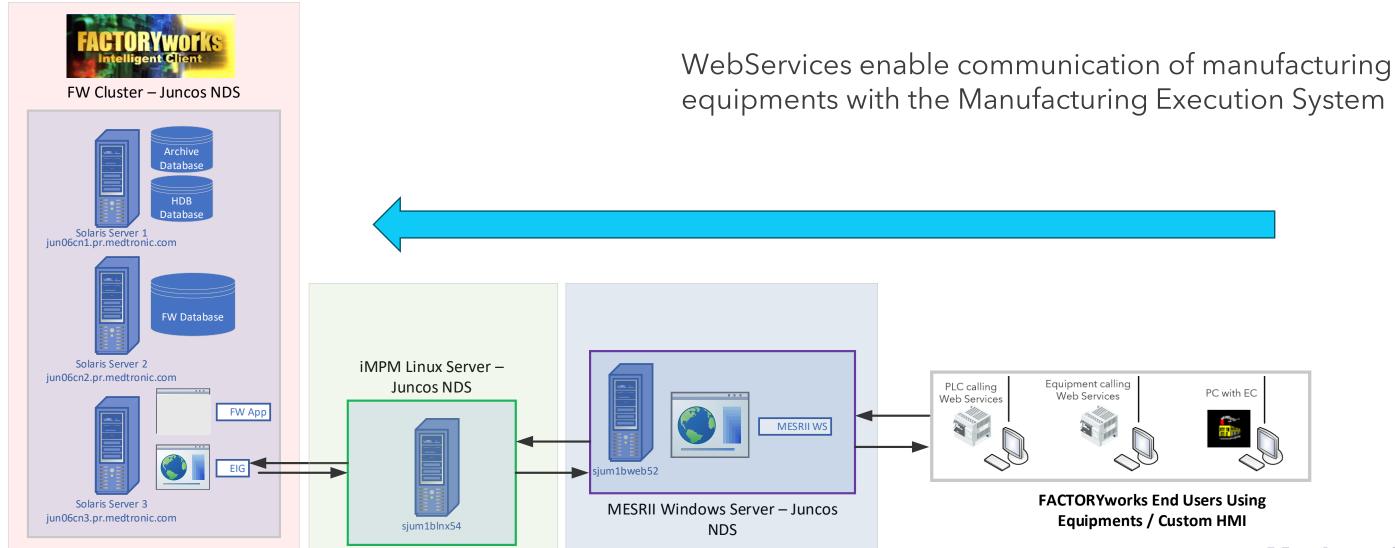
Capability helps teams predict the performance of the system and fix subsystem and component issues even before the system is built.


Good Control plans ensure we consistently produce products of the highest quality over time.

Process Development - 1

Manufacturing Equipment Integration to an MES

Jose Guzman


Manufacturing Execution System (MES) – a comprehensive, dynamic software system that monitors, tracks, documents, and controls the process of manufacturing goods from raw materials to finished products.

Basic Concepts

Web Services - a type of internet software that use standardized messaging protocols and are made available from an application service provider's web server for use by a client or other web-based programs.

Web Libraries - a collection of precompiled code modules or functions that developers can use to add specific functionality to their applications. Unlike frameworks, libraries do not dictate the overall structure or design of an application.

High Level Architectural Diagram

Uses

Control of high-volume automated Equipment

Interconnection of multiple manufacturing equipment within a production line

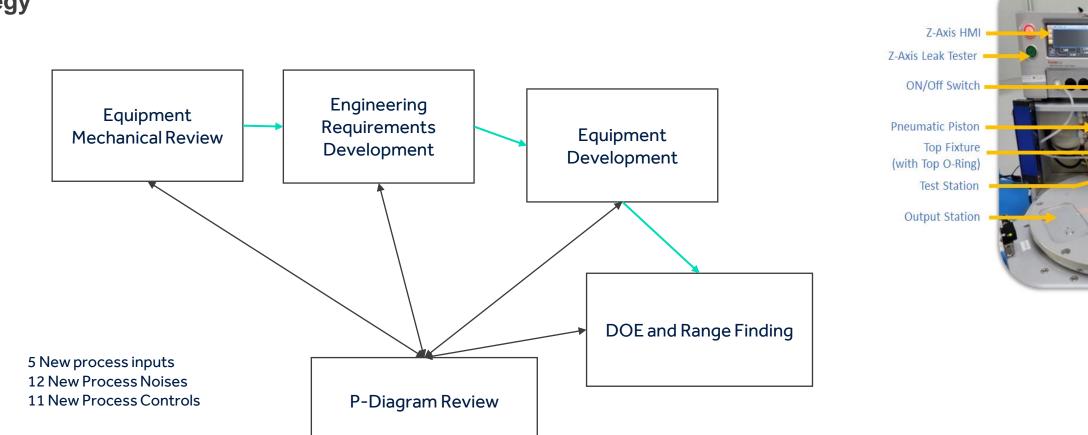
Reporting of manufacturing data for quality/operations decision-making

Process Development - 2

Synergy COS - Leak Test Process

Rene Rios

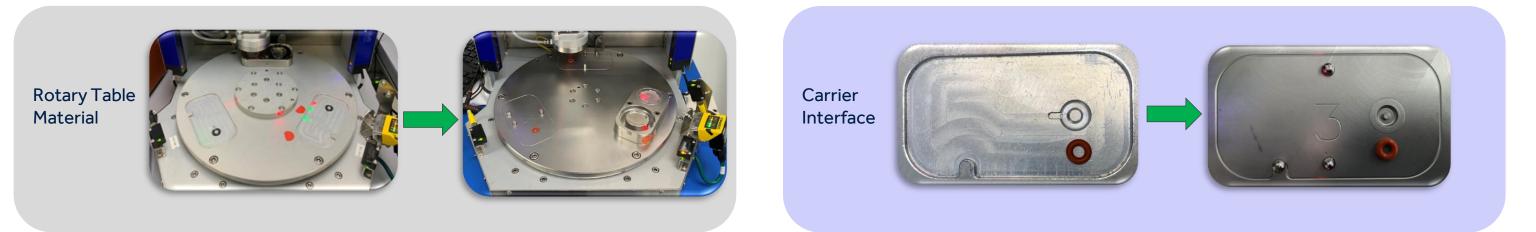
Medtronic


Objective & Strategy

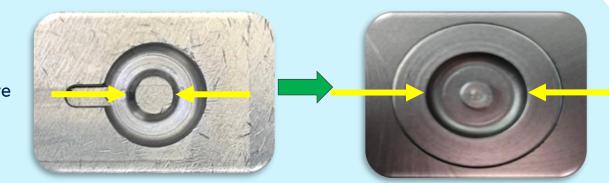
Objective

Develop an equipment and measurement process method that meets a % tolerance <25% while using all 3 positions.

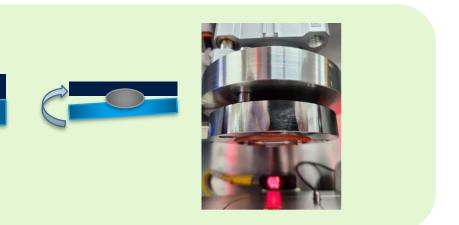
- · Reduce standard deviation in the process reading.
- Achieve reading consistency through multiple manufacturing lines.



Main HMI

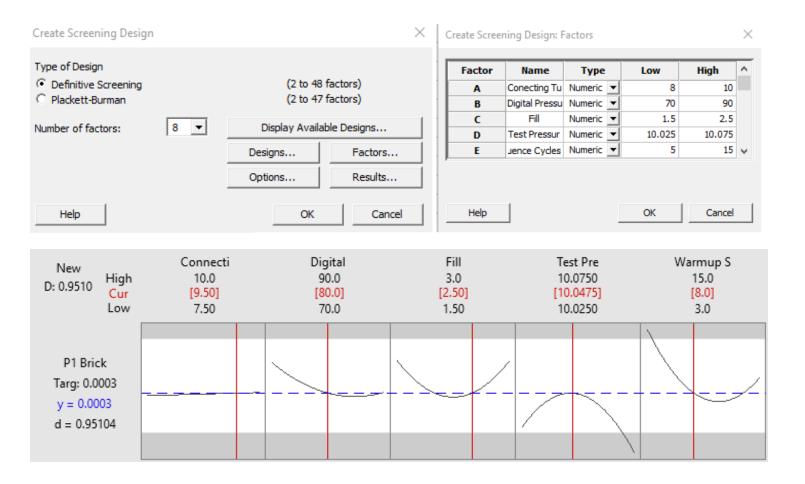

Safety Curtain **COS Line Carrier** Bottom O-Ring Location Input Scanner Input Station **Rotary Table**

Identify & Design



Bottom O-Ring Groove Design

Top Fixture Alignment

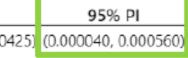

Piston Top Fixture

Process Development

First Principles for leak test

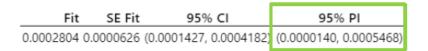
$$P_{R} = P - \frac{P_{ATM} \times L.R(t)}{V}$$

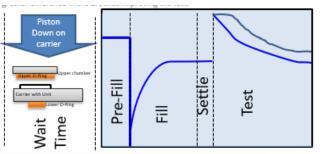
Or $\Delta P_{leak} = \frac{P_{ATM} \times L.R(t)}{V}$


Multiple Response Prediction

Variable	Setting	
Connecting Tube Length	9	
Digital Pressure Regulator Leve	80	
Fill	2.5	
Test Pressure Limits with Brick	10.05	
Warmup Sequence Cycles	7.51363	

Response	Fit	SE Fit	95% CI


P1 Brick Leak 0.000300 0.000057 (0.000175, 0.000425) (0.000040, 0.000560)



Prediction & Results

Prediction

Most Significant Factors:

Variable Name (units)	Range
Connecting Tube Length (in)	9.25-9.75
Digital Pressure Regulator Level (PSIG)	75-85
Fill (s)	2.5
Test Pressure limit (PSIG)	10.045-10.055
Warmup Cycles (cycles)	8

Results

- Increase capacity from 1 position to 3 positions.
- Test Method Validation requirement compliance (%tol<25%).
- System controlled Warmup procedure.
- System controlled Automated Warmup keeper sequence
- Internal leak standard (more affordable and easier to maintain option).

Stdev: 0.0003357psig/2secs

% Tolerance 17.04 %

Process Development - 3

D-Glucose Concentration through HPLC Assay

Orlando Ramirez

Project Charter

Determination of D-Glucose Concentration through HPLC Assay Project Start Date: 07/OCT/2022

Problem Statement

- Bicarbonate Test involves the final glucose reading verification of Guardian Sensor 3. YSI Biochemistry Analyzers are used to verify glucose concentrations of the solutions tested. YSI instruments are calibrated with glucose standards.
- The Glucose components are being tested externally by SGS Life Science Service Company. Testing and raw material release takes 30 days normally.

Project Scope

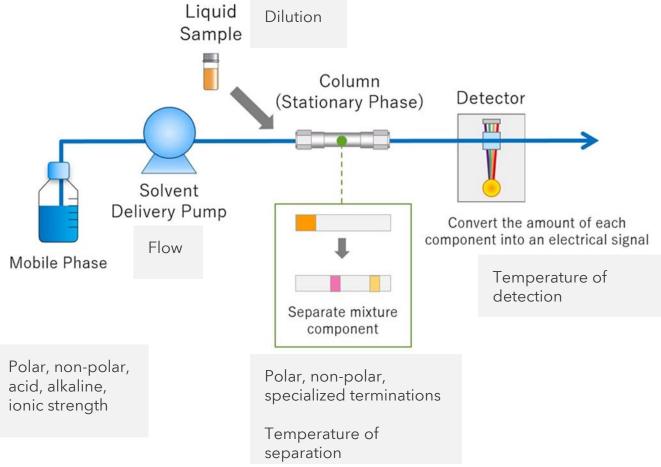
• This implement the testing capability for two (2) components (both glucose material) with concentrations of 1.80 g/L and 10 mmol; validating the instrumentation and optimizing the test method required in MPROC Laboratory facilities.

Sample Shipping

External Supplier

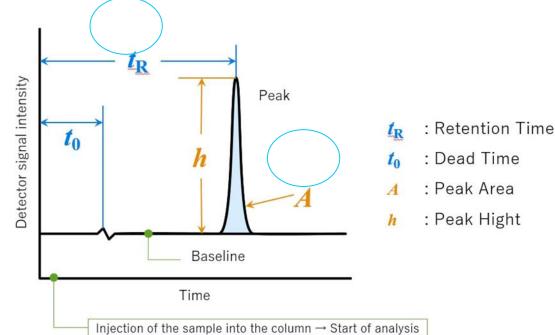
~30 days

1 additional day + Cost

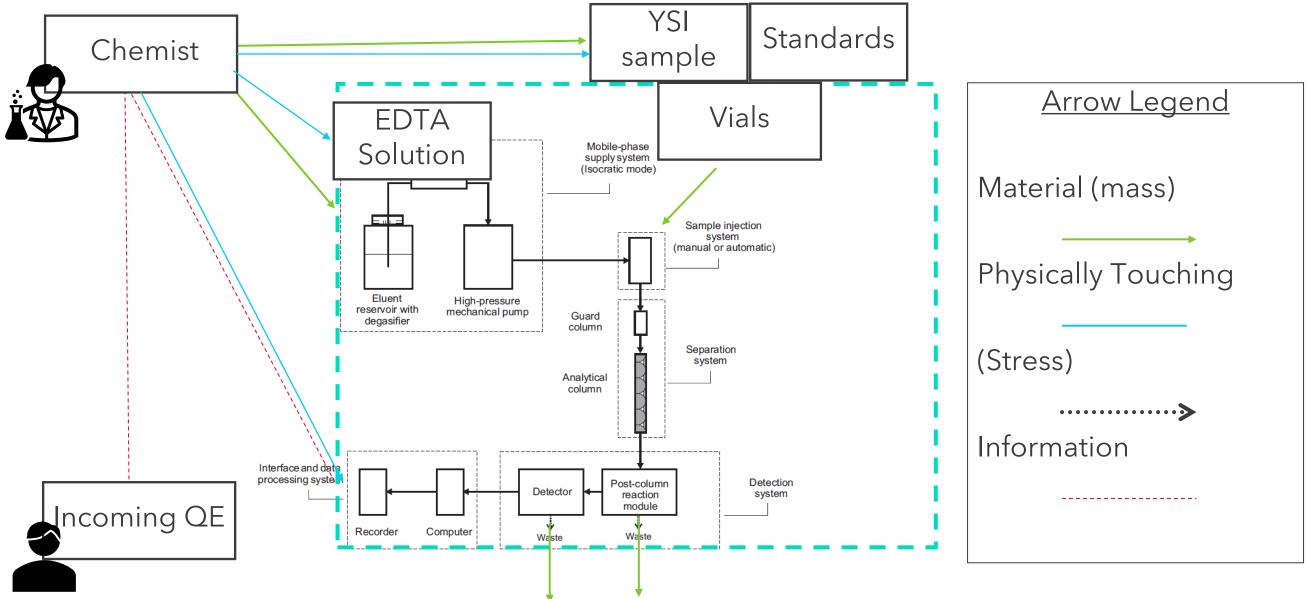

~ \$4000 USD

Background

An <u>assay</u> in a lab setting is an investigative procedure for qualitatively or quantitatively measuring the presence, amount, or function activity of a target element.


$$\sigma^2 = \sigma^2_{\text{product}} + \sigma^2_{\text{method}}$$

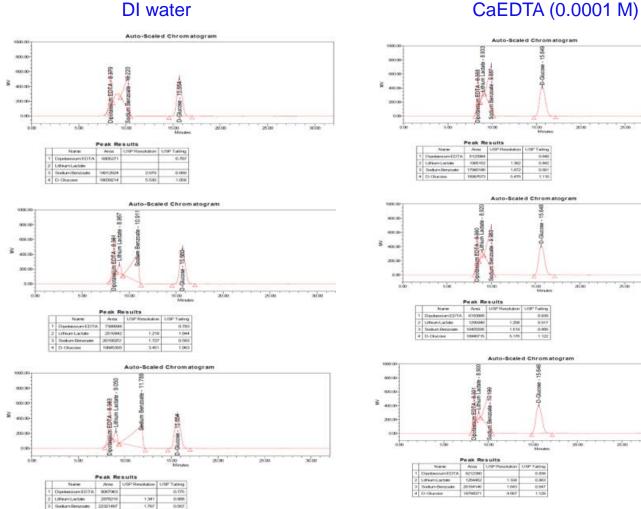
High-performance liquid chromatography (HPLC) is an analytical technique used to separate the components in a mixture, and to identify and quantify each component.

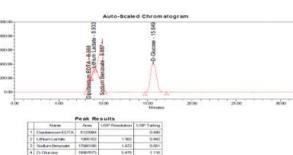

https://www.waters.com/webassets/cms/events/docs/FundamentalsofHPLCWebinar_TRS_102012.pdf

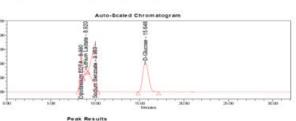
Boundary Diagram: Identify and Design

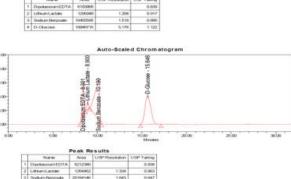
Key Parameter: Characterization - Boundary Diagram

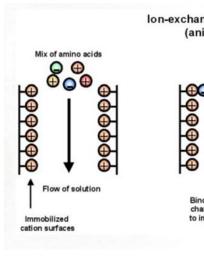
Desired Outcome: Identify potential noises related HPLC system operation by the chemist.

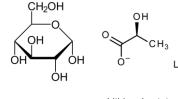

36 MJC | March 2024 | Confidential, for Internal Use Only


Example of Error State Occurrence Reduction: analytes coelution and column bleeding


Key Parameter: Optimize - P-diagram


Takeaways: Error state occurrence was reduced.


The life of the column SugarPak1 was extended from 3 to 85 lots. (Cost of each 1,980.00)



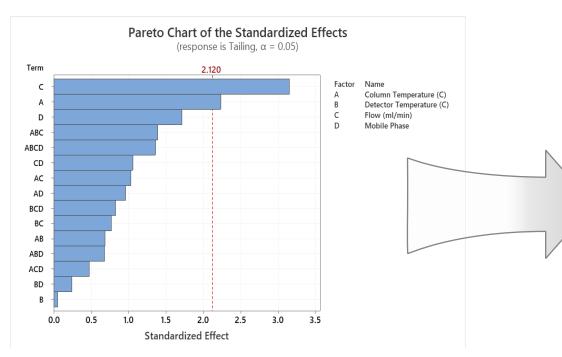
Ion-exchange chromatography (anion exchange) ၜႝၜၜၜၜၜ ဓဓဓဓဓဓ -CC 9999 **••••** €♥⊕ Binding of negatively charged amino acids to immobilized cation Separation of negatively surface charged amino acids Figure 7: 8082032-001 components chemical structures CH₂OH _O⁻Na⁺ 0 OF OF • 2H₂O

D-glucose

Lithium Lactate

Mobile Phase	Glucose Retention time (min)	Sodium Benzoate Initial Retention time (min)	Sodium Benzoate Retention time injection 15 (min)	Injection at which the peaks overlapped	Peak shift per injection (min)
DI Water	15.6	10.2	11.0	32	0.043 min
Calcium EDTA (0.0001 M)	15.6	9.8	9.9	855	0.007 min

Sodium Benzoate


Dipotassium EDTA

Ô

R = H or K (1:1)

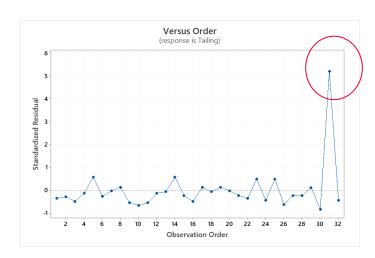
DOE: Pareto Graphs for peak tailing

Scope: Minimize the peak tailing

Pareto Chart of the Standardized Effects (response is Tailing, $\alpha = 0.05$) Term 2.048 Factor Name Column Temperature (C) Detector Temperature (C) Flow (ml/min) С Mobile Phase С А D 1.0 1.5 2.0 2.5 3.0 3.5 0.5 0.0 Standardized Effect

Reduced Factorial Regression

Excellent A_s = 1.0 - 1.05

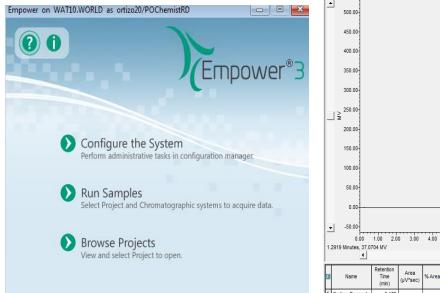

Undesirabl A_s = 2.0 Acceptable A_s = 1.2

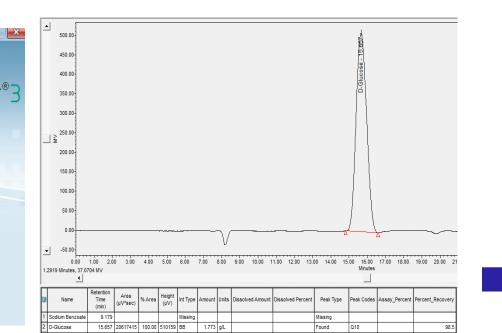
Terrible A_s = 4.0

Complete Factorial Regression Regression Equation in Uncoded Units

Tailing = 2.272 - 0.02225 Column Temperature (C) + 0.647 Flow (ml/min) - 0.0234 Mobile Phase

The obs 31 resulted in an outlier, upon data verification the chromatography had an atypical tailing. This analysis was removed for the regression analysis execution and repeated. The new tailing factor was 1.18 and 1.19.


Fits and Diagnostics for All Observations


ailing	Fit	Resid	Std Resid	
.1810	1.2168	-0.0358	-0.36	
.2350	1.2636	-0.0286	-0.29	
.0860	1.1342	-0.0482	-0.49	
.0740	1.0874	-0.0134	-0.14	
.0550	0.9984	0.0566	0.57	
.2360	1.2636	-0.0276	-0.28	
.0850	1.0874	-0.0024	-0.02	
.0580	1.0452	0.0128	0.13	
.1200	1.1746	-0.0546	-0.55	
.0680	1.1342	-0.0662	-0.67	
.1200	1.1746	-0.0546	-0.55	
.0740	1.0874	-0.0134	-0.14	
.1210	1.1278	-0.0068	-0.07	
.0550	0.9984	0.0566	0.57	
.1050	1.1278	-0.0228	-0.23	
.0860	1.1342	-0.0482	-0.49	
.0580	1.0452	0.0128	0.13	
.1210	1.1278	-0.0068	-0.07	
.0580	1.0452	0.0128	0.13	
.0850	1.0874	-0.0024	-0.02	
.1940	1.2168	-0.0228	-0.23	
.1810	1.2168	-0.0358	-0.36	
.0460	0.9984	0.0476	0.48	
.1300	1.1746	-0.0446	-0.45	
.0460	0.9984	0.0476	0.48	
.0710	1.1342	-0.0632	-0.64	
.1050	1.1278	-0.0228	-0.23	
.1940	1.2168	-0.0228	-0.23	
.0560	1.0452	0.0108	0.11	
.1800	1.2636	-0.0836	-0.85	
.7780	1.2636	0.5144	5.20 R	
.1300	1.1746	-0.0446	-0.45	

R Large residual

LIMs Labware / EMPOWER 3 System Integration and Data Management

EMPOWER 3

),	Name	Field Type	Туре	Width	Precision	Minimum	Maximum	Default	Source	Required	Formula	CField Id
1	Assay_Percent	Peak	Real (0.0)	12	2	-1000000000	1000000000		Calculated	Γ	(CCompRef1[Amount]/1.80)*100	100
2	Column Name	Sample	Text	32	0	0	0		Keyboard	Γ		81
3	Column Serial Number	Sample	Text	32	0	0	0		Keyboard			80
4	Dilution	Sample	Real (0.0)	11	4	0	1000000	1.0	Keyboard			97
5	Level Values	Sample	Enum	32	0	0	0		Keyboard			95
6	Percent_Recovery	Peak	Real (0.0)	12	1	-10000000000	1000000000		Calculated		(CCompRef1[Amount]/Control Value)*100	101
7	Sample Matrix	Sample	Enum	32	0	0	0		Keyboard			79
8	SampleName	Sample	Text	32	0	0	0		Keyboard			99
9	SampleWeight	Sample	Real (0.0)	11	4	0	1000000	1.0	Keyboard			98
10	Solvent	Sample	Text	32	0	0	0		Keyboard			96

LIMs Labware

System Suitability Run:						
Empower Sample Set Run:	240307_JIG_01	SS: 3341 RS: 3386				
Specifications:	Results:	Status:				
Resolution 200,000 - 100,000 g/mol: (Pass: Res. Value ≥ 0.5, Fail: Res. Value < 0.5)	1.4	Pass				
Resolution 100,000 - 50,000 g/mol: (Pass: Res. Value ≥ 0.5, Fail: Res. Value < 0.5)	1.1	Pass				
Tailing 100,000 g/mol: (Pass: Tailing ≤ 2.0, Fail: Tailing > 2.0)	1.0	Pass				

Number] / 1		Version 2	Complete
		01/30/2024 02:22:41 PM	
	1	01/30/2024	
ght	~	0.000000	g
	~	10.000045	g
ght	~	0.000000	g
	~	10.000020	g
	1	0.5007	equivalents/l
±1	~	15.2	ml
\$2	~	15.0	ml
	1	0.7610605752	meq/g
	1	0.7510484979	meq/g
Amine Number]	~	0.76	meq/g
	1	1	%

Process Development - 4

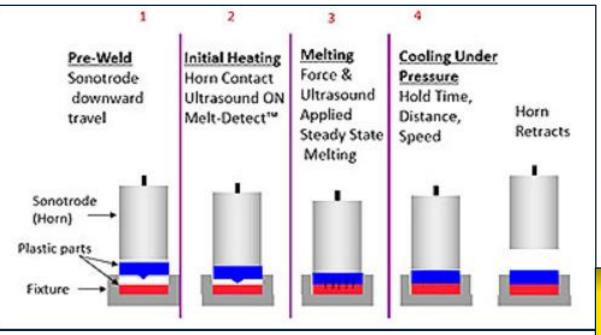
Synergy COS Ultrasonic Welding Process

Rene Rios

SYNERGY COS ULTRASONIC WELDING PROCESS

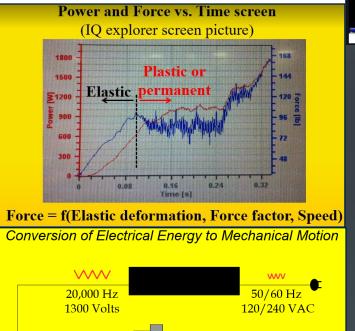
SYSTEM DESCRIPTION

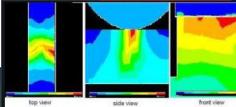
USW Scoped Assembly


PCBA

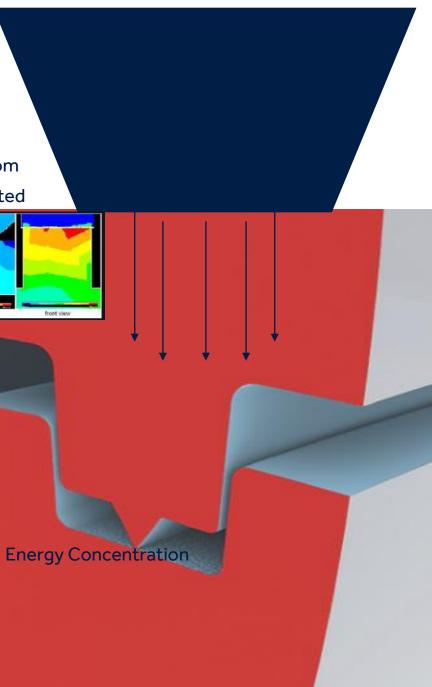
x 2

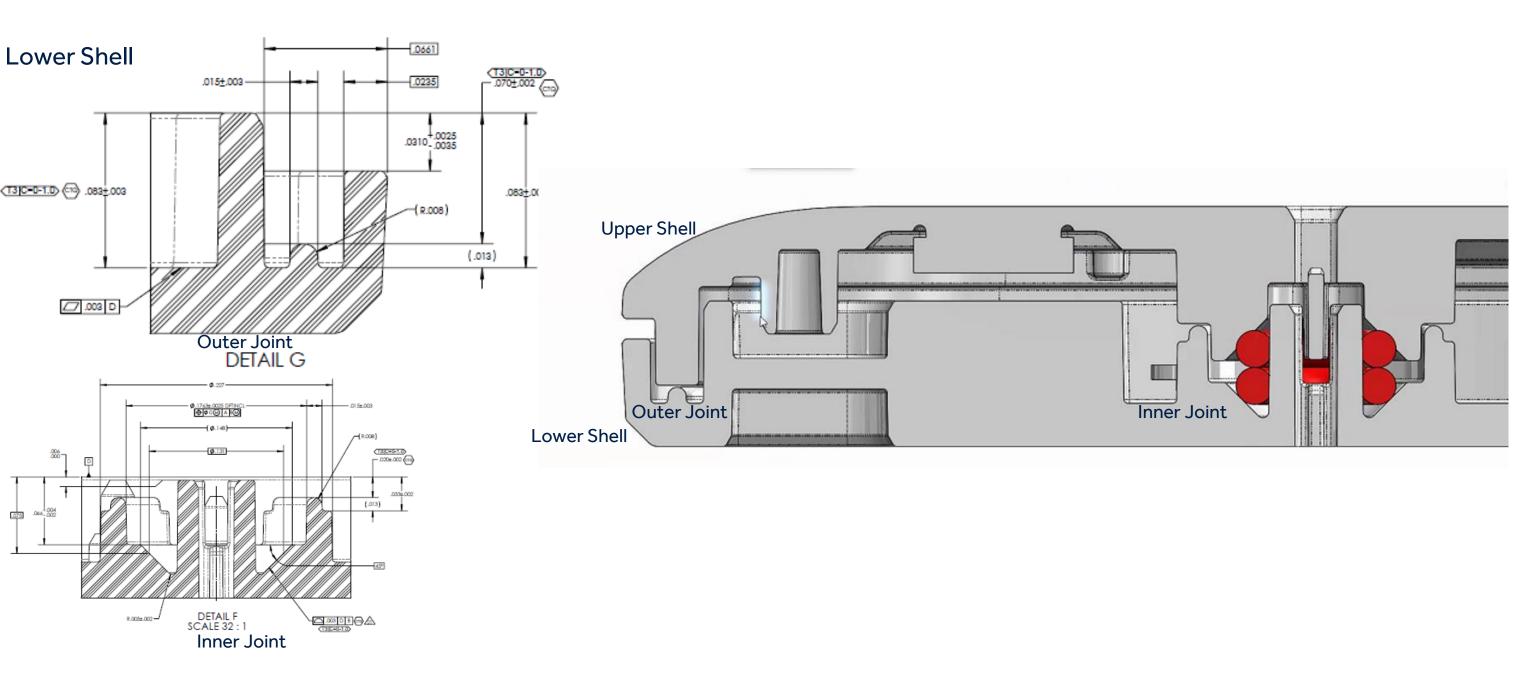
Upper Shell Antenna **Battery Tab** Battery x 2

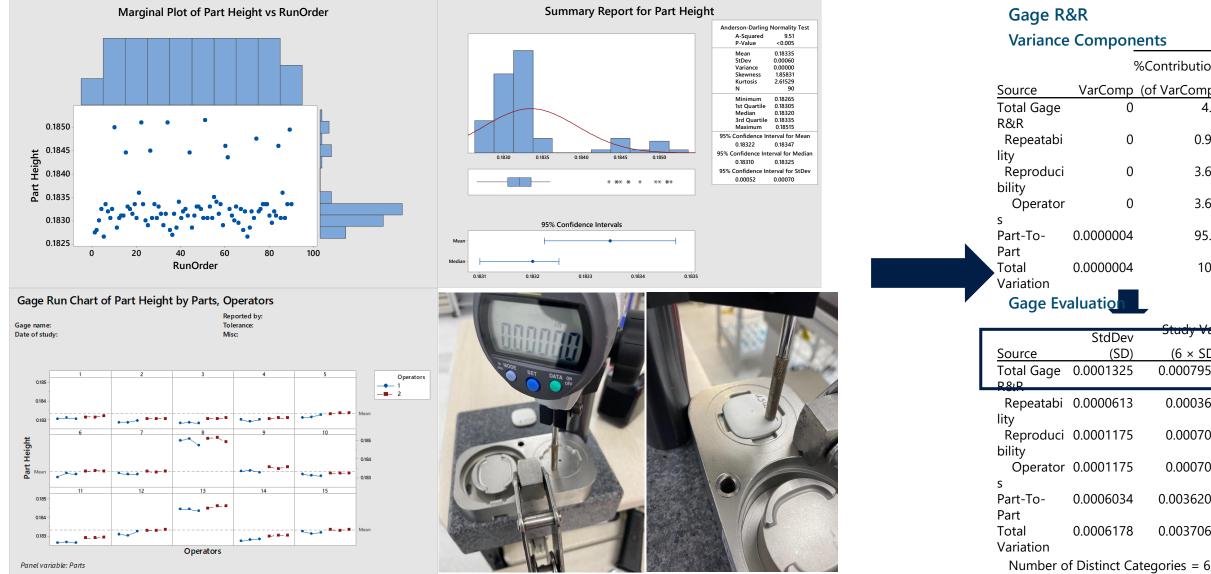

SYNERGY COS ULTRASONIC WELDING PROCESS 1ST PRINCIPLES


1st Principles Challenge Conditions

Input Parameters	OQ Low (Least Collapse)	OQ High (Most Collapse)
Amplitude	Low	High
Trigger Force	Low	High
Melt Detect	Low	High
Weld Distance	Low	High
Weld Speed	High	Low
Post Weld Force	Low	High
Post Weld Speed	Low	High
Static Hold	Low	High

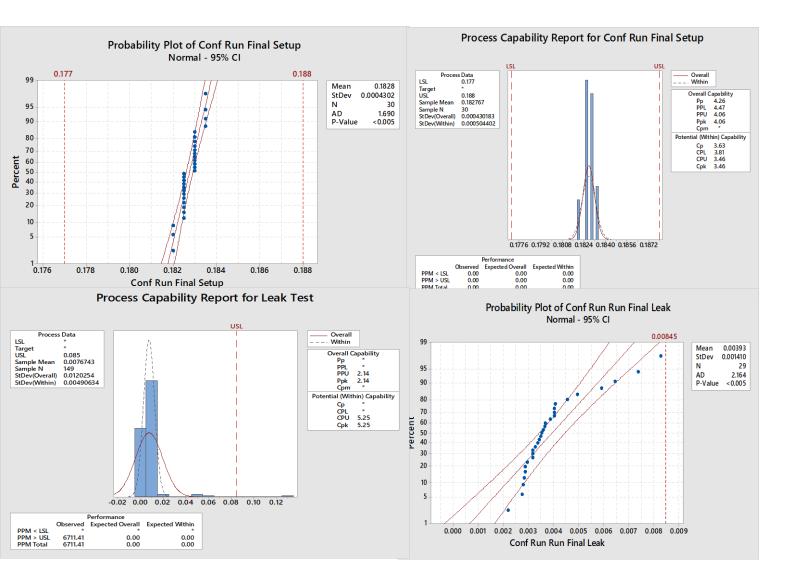

Standard Energy Concentration and heat transfer occurs from the mechanically vibrating part to the part receiving the heated component


0.0008" (20 μ m) X Booster Gain X Horn Gain = Amplitude



SYNERGY COS ULTRASONIC WELDING PROCESS 1ST PRINCIPLES

SYNERGY COS ULTRASONIC WELDING PROCESS PRE DV-PERFORMANCE – PART HEIGHT MSA


-	

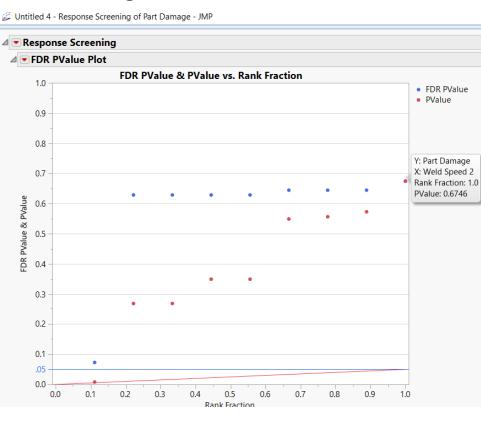
ntribution			
<u>VarComp)</u> 4.6			
0.99			
3.62			
3.62			
95.4			
100			

Study Var	%Study Var
(6 × SD)	(%SV)
0.0007952	21.45
0.000368	9.93
0.000705	19.02
0.000705	19.02
0.0036204	97.67
0.0037067	100
ories = 6	

SYNERGY COS ULTRASONIC WELDING PROCESS PRE DV-PERFORMANCE - CONF RUNS NOMINAL

Next Activities: Optimization Transfer Function Validation MC Simulation OQ/PQ Runs Data Control Analysis

Design Requirements Output


Part Height = 4.06

Leak Test = 2.14 Needle Insertion = 100% Pass

SYNERGY COS ULTRASONIC WELDING PROCESS SPEED SEGMENTATION – ORDINAL APPROACH

Part Damage

1.00								
								٠
					•	•		
0.75	•						-	
0.75 – ພ		•	•				•	
cal								
auroade 0.50 –			•	•				
e 0.50 –							•	
Dar		•			•			
				•				
		•						
0.25 –								
		•						
•			•					•
0.00				All R	011/5			
				All N	OWS			
	-							
Split	Prune	Color Points			Number			
Split	Prune		RSquare	Ν	of Splits			
Split	Prune							
	Prune		RSquare	Ν	of Splits			
	Prune		RSquare	Ν	of Splits			
All Rows			RSquare	Ν	of Splits			
All Rows	G^2		RSquare	Ν	of Splits			
All Rows Count 25 32.9	G^2 960731		RSquare	Ν	of Splits			
All Rows Count 25 32.9	G^2 960731		RSquare 0.000	Ν	of Splits			
All Rows Count 25 32.9	G^2 960731	Color Points	RSquare 0.000	N 25	of Splits 0			
All Rows Count 25 32.9 Candidat Term	G^2 960731	Candidate	LogW	N 25	of Splits 0 ut Point			
All Rows Count 25 32.9 Candidat Term Amplitude	G^2 960731 tes	Candidate G^2	CogW 0.31966	N 25	of Splits 0 ut Point			
All Rows Count 25 32.9 Candidat Term	G^2 060731 tes	Candidate G^2 2.241908786	Contemporation Contemporatio Contemporation Contemporation Contemporation Contemp	N 25 Forth CL 0263 94 2642 45	of Splits 0 ut Point			
All Rows Count 25 32.9 Candidat Term Amplitude Trigger For Weld Dista	G^2 060731 tes rce nce	Candidate G^2 2.241908786 6.745862260 3.221582397	RSquare 0.000 LogW 0.31966 1.26262 0.35619	N 25 000000 0263 94 2642 45 7008 0.0	of Splits 0 ut Point			
All Rows Count 25 32.9 Candidat Term Amplitude Trigger For Weld Dista Melt Detec	G^2 060731 tes rce nce tt	Candidate G^2 2.241908786 6.745862260 3.221582397 1.702452803	Contraction Contra	N 25 Forth CL 0263 94 2642 45 7008 0.0 2792 15	of Splits 0 ut Point			
All Rows Count 25 32.9 Candidat Term Amplitude Trigger For Weld Dista Melt Detec Weld Spee	G^2 960731 tes rce nce t d	Candidate G^2 2.241908786 6.745862260 3.221582397 1.702452803 5.593581494	RSquare 0.000 LogW 0.31966 1.26262 0.35619 0.22209 1.00877	N 25 Vorth CL 0263 94 2642 45 7008 0.0 2792 15 2163 0.0	of Splits 0 ut Point ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;			
All Rows Count 25 32.9 Candidat Term Amplitude Trigger For Weld Distat Melt Detec Weld Speet Weld Speet	G^2 960731 tes rce nce t t d d 2	Candidate G^2 2.241908786 6.745862260 3.221582397 1.702452803 5.593581494 1.912287154	RSquare 0.000 0.31966 1.26262 0.35619 0.22209 1.00877 0.25927	N 25 Vorth CL 0263 94 2642 45 7008 0.0 2792 15 2163 0.0 5556 0.0	of Splits 0 4t Point 5 0095 5 0325 07			
All Rows Count 25 32.9 Candidat Term Amplitude Trigger For Weld Dista Melt Detec Weld Spee	G^2 060731 tes tce nce t d d 2 Force	Candidate G^2 2.241908786 6.745862260 3.221582397 1.702452803 5.593581494	 RSquare 0.000 LogW 0.31966 1.26262 0.35619 0.22209 1.00877 0.25927 1.40075 	N 25 007th CL 0263 94 2642 45 7008 0.0 2792 15 2163 0.0 5569 0.0 2210 85	of Splits 0 4 Point 5 0095 5 0325 07 5			

Image: A state of the state

⊿ Effect Summary

-				
Source	- 1	LogWorth		
Weld Speed		3.285		
Weld Speed 2		0.00		
Hold Time		0.001		
Melt Detect		0.00	1 22	
Post Weld For		0.00	S - 20	
Post Weld Spe		0.000		
Weld Distance	2			
Trigger Force				
Amplitude		100	- <u></u>	
Remove Add	Edi		t	
Whole Mode				
Model -Lo	gLike	lihood	DF	
Difference	16.	480365	9	
Full	3.38	761e-7		
Reduced	16.	480365		
RSquare (U)			1.0000	
AICc		4	2.3077	
BIC		3	5.4076	
Observations (o	r Sum	Wgts)	25	
Fit Details				
Lack Of Fit				
Source	DF	-LogLike	lihood	
Lack Of Fit	37	3.38	761e-7	
Saturated	46		0	
Fitted	9	3.38	761e-7	
Parameter E	stim	ates		
Term		Estimate	Std Err	
Intercept[0]	42	2.093043	63165.9	
Intercept[1]	47	4.774913	67015.2	
Amplitude	3.9	95823463	707.019	
Trigger Force	-8	.1273847	643.630	
Weld Distance				
Melt Detect	-1	.9733389	650.03	
Weld Speed	41	32.58288	583969.	
Weld Speed 2	25	51.49666	190905.	
Post Weld Force	-	2.930335	457.158	
Post Weld Speed	d 10	16.23068	180727.	
Hold Time	-6	8.973083		

Closing Remarks

Manuel Mellado